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Introduction
Obesity context and data set overview
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Predicting Obesity Status 
Using Machine Learning

4

Obesity is a growing global health issue, 
associated with numerous health risks such as 
heart disease and diabetes. Understanding 
factors that contribute to obesity and accurately 
predicting obesity status is essential for public 
health interventions.

Machine learning models can help in identifying 
patterns in large datasets that may be difficult 
for traditional methods to uncover. By predicting 
an individual’s obesity status, these models can 
help with early intervention.
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Observations

Each observation refers to an individual 
entry or record in the dataset whose 

obesity status is being predicted

Variables
 The features or attributes that 

describe each person (such as age, 
gender, BMI, etc.)

Obesity Data Set

3042686



Preprocessing
Data visualization and imputation
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Distribution Status: 
Obese vs. Not Obese

● There are significantly 
more Not Obese 
individuals than Obese 
individuals 
(approximately 3:1)

● Imbalance can lead to a 
biased model that 
predicts “Not Obese” 
more frequently.





Data imputation 9

Libraries Used:

● missForest (for numerical data)

● FactoMineR (for categorical data)



Data imputation 10

1. Load dataset and extract numeric and categorical columns

2. Impute missing values in numeric columns using missForest()
- Leverages the predictive power of Random Forests to handle complex 

relationships.
- Handles nonlinear interactions and works for large datasets.

3. Impute missing values in categorical columns using imputeMCA(), which is a 
function in “FactoMineR” package.

- is an extension of PCA and uses Multiple Correspondence Analysis (MCA) to 
impute missing categorical data by identifying relationships between variable 
categories and projecting them into a reduced latent space.



Methodology
Modeling
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Model Comparison
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Accuracy on 
Test Dataset

GLM 0.7535

LDA 0.7399

QDA 0.7439

Random Forest 0.9653

XGB 0.9736



Model Comparison
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GLM

● assumes linear 
relationships, 
unsuitable for 
nonlinear patterns

● Sensitive to outliers

LDA/QDA

● Normality Assumption: 
Assumes features are 
normally distributed 
within each class

●  LDA assumes equal 
variances across classes

● Sensitive to 
Multicollinearity

● Sensitive to outliers

Random Forest

● Suitable for both linear 
and nonlinear data

● Not sensitive to 
multicollinearity

● Computationally 
intensive, tuning 
required

● Handles outlier and 
noise well



Results & Final 
Discussion

Final Model Assessment
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Why we chose XGB..
15

● Dataset Complexity & Preprocessing
○ Over 40,000 observations with a mix of categorical and numerical variables.
○ Presence of NA values necessitated data imputation and mutation for accurate 

modeling.
● Model Selection & Performance

○ Achieved 96% accuracy using a Random Forest model with 5-fold cross-validation.
○ Transitioned to XGBoost for enhanced classification performance within the 

ensemble framework.
● Advantages of XGBoost over random forest

○ XGBoost optimizes and assesses decision trees sequentially, correcting errors from 
previous trees.

○ This boosting methodology reduces residual errors, improving the gap between 
actual and predicted values.



Benefits of XGB
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XGB Model Advantages:
● Ridge and Lasso penalties prevent overfitting
● Reduces noise through sequential error correction
● Effective handling of large datasets with variable context

Model Performance
● 97.36% accuracy with a misclassification rate of 0.02643
● Imputed data enabled robust obesity classification predictions

Key Features & Efficiency
● Identifies impactful variables for better interpretability 
● Manages extreme values efficiently, optimizing workload 
● High accuracy with reduced time costs despite cross-validation 

challenges



Visualizations of XGB



Visualizations of XGB



Visualizations of XGB



Limitations &
Final Words

Setbacks and Assumptions
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Limitations
21

1. Some weaker variables may have been included, 
potentially impacting model efficiency.

2. Both Random Forest and XGBoost are ensemble models, 
making them harder to interpret.

3. Both models are computationally intensive requiring 
significant processing power and time for over 40,000 
observations.



Final thoughts
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Overall we achieved a good prediction with our model.

Our project shows that machine learning is a powerful 
tool in solving complex health challenges and guiding 
data-driven decisions.


