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Obesity context and data set overview




Predicting Obesity Status "
Using Machine Learning

Obesity is a growing global health issue,
associated with numerous health risks such as
— heart disease and diabetes. Understanding
factors that contribute to obesity and accurately
predicting obesity status is essential for public
health interventions.

Machine learning models can help in identifying
. patternsin large datasets that may be difficult
~~ for traditional methods to uncover. By predicting

- anindividual's obesity status, these models can
help with early intervention.




SObesity Data Set

42686

Observations Variables
Each observation refers to an individual The features or attributes that
entry or record in the dataset whose describe each person (such as age,

obesity status is being predicted gender, BMI, etc.)



Data visualization and imputation
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Distribution of Obesity Status

All Individuals

Distribution Status:
Obese vs. Not Obese

e T[hereare significantly
more Not Obese
individuals than Obese

Obesity Status individuals
(] NatOnese (approximately 3:1)
B ovese

e |mbalance canleadtoa
biased model that
predicts “Not Obese”
more frequently.



Density Plots of Numeric Predictors by Obesity Status
Density Plot for Height

Density Plot for Age
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Data imputation

Proportion of Missing Data Across Variables
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Libraries Used:

missForest (for numerical data)

FactoMineR (for categorical data)



Data imputation

1. Load dataset and extract numeric and categorical columns

2. Impute missing values in numeric columns using missForest()
- Leverages the predictive power of Random Forests to handle complex
relationships.
- Handles nonlinear interactions and works for large datasets.

3. Impute missing values in categorical columns using imputeMCA(), whichis a
function in “FactoMineR” package.
- isanextension of PCA and uses Multiple Correspondence Analysis (MCA)to
impute missing categorical data by identifying relationships between variable
categories and projecting them into a reduced latent space.
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Modeling




Model Comparison

GLM

LDA

QDA
Random Forest

XGB

Accuracy on
Test Dataset

0.7535
0.7399
0.7439
0.9653

0.9736



Model Comparison

GLM

® assumeslinear
relationships,
unsuitable for
nonlinear patterns

e Sensitive tooutliers

LDA/QDA

e Normality Assumption:
Assumes features are
normally distributed
within each class

e [ DAassumesequal
variances across classes

e Sensitive to
Multicollinearity

® Sensitive to outliers
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Random Forest

e Suitable for both linear
and nonlinear data

e Not sensitive to
multicollinearity

e (Computationally
intensive, tuning
required

e Handles outlier and
noise well



Final Model Assessment
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Why we chose XGB..

e Dataset Complexity & Preprocessing

O

(@)

Over 40,000 observations with a mix of categorical and numerical variables.

Presence of NA values necessitated data imputation and mutation for accurate
modeling.

e Model Selection & Performance

O

(@)

Achieved 96% accuracy using a Random Forest model with 5-fold cross-validation.

Transitioned to XGBoost for enhanced classification performance within the
ensemble framework.

e Advantages of XGBoost over random forest

O

XGBoost optimizes and assesses decision trees sequentially, correcting errors from
previous trees.

This boosting methodology reduces residual errors, improving the gap between
actual and predicted values.



Benefits of XGB

01 XGB Model Advantages:
e Ridge and Lasso penalties prevent overfitting
e Reduces noise through sequential error correction
e Effective handling of large datasets with variable context

O 2 Model Performance
e 09736% accuracy with a misclassification rate of 0.02643
e Imputed data enabled robust obesity classification predictions

Key Features & Efficiency
e Identifies impactful variables for better interpretability
O 3 e Manages extreme values efficiently, optimizing workload
e High accuracy with reduced time costs despite cross-validation
challenges



Visualizations of XGB

Feature Importance (Top 20 Features) ROC Curve for XGBoost Model
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isualizations of XGB

& Distribution of Predicted Probabilities
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Visualizations of XGB
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Setbacks and Assumptions
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Limitations

1. Some weaker variables may have been included,
potentially impacting model efficiency.

2. Both Random Forest and XGBoost are ensemble models,
making them harder to interpret.

3. Both models are computationally intensive requiring
significant processing power and time for over 40,000
observations.



Final thoughts ¢

Overall we achieved a good prediction with our model.

Our project shows that machine learning is a powerful
tool in solving complex health challenges and guiding
data-driven decisions.
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